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Borel sets and Borel functions

Definition

Polish space: a separable, completely metrizable topological space.

Let X,Y be two Polish spaces.

Definition

B(X): Borel sets of X is the σ-algebra generated by the open sets
of X.

Definition

A function f : X → Y is Borel function if f−1(U) is Borel for U
open in Y .
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Borel hierarchy

Σ0
1 = open, Π0

1 = closed;

Σ0
2 = Fσ, Π0

2 = Gδ;

for 1 ≤ α < ω1,

Σ0
α = {

⋃
n∈ω

An : An ∈ Π0
αn
, αn < α};

Π0
α = the complements of Σ0

α sets;

∆0
α = Σ0

α ∩Π0
α.
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Borel reducibility between equivalence relations

Let X,Y be Polish spaces and E,F equivalence relations on
X,Y respectively.

Definition

E ≤B F : There is a Borel function θ : X → Y such that, for all
x, y ∈ X,

xEy ⇐⇒ θ(x)Fθ(y).

E ∼B F : E ≤B F and F ≤B E;
E <B F : E ≤B F but not F ≤B E.
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Σ1
1 sets and Π1

1 sets

Definition

Let X be a Polish space. A subset A ⊆ X is analytic (or Σ1
1) if

there is a Polish space Y and a closed subset C ⊆ X ×Y such that

x ∈ A ⇐⇒ ∃y ∈ Y ((x, y) ∈ C).

A subset A ⊆ X is co-analytic (or Π1
1) if X \A is Σ1

1.

Theorem (Suslin)

Let A ⊆ X. Then A is Borel iff it is both Σ1
1 and Π1

1.
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1st dichotomy theorem

We say an equivalence relation E on X is Borel, Σ1
1, or Π1

1 if
{(x, y) ∈ X2 : xEy} is so in X2.

Theorem (Silver, 1980)

Let E be a Π1
1 equivalence relation. Then

E ≤B id(ω) or id(R) ≤B E.
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• id(1)
• id(2)

...

• id(ω)
• id(R)
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2nd dichotomy theorem

Definition

E0 is the equivalence relation on {0, 1}ω defined by

xE0y ⇐⇒ ∃m∀n ≥ m(x(n) = y(n)).

Fact: E0 ∼B R/Q.

Theorem (Harrington-Kechris-Louveau, 1990)

Let E be a Borel equivalence relation. Then either E ≤B id(R) or
E0 ≤B E.
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3rd dichotomy theorem

Definition

E1 is the equivalence relation on Rω defined by

xE1y ⇐⇒ ∃m∀n ≥ m(x(n) = y(n)).

Fact: E1 = Rω/c00, where c00 =
⋃
nRn.

Theorem (Kechris-Louveau, 1997)

If E ≤B E1, then E ≤B E0 or E ∼B E1.
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4th dichotomy theorem

Definition

Let E be an equivalence relation on X. The equivalence relation
Eω on Xω defined by

xEωy ⇐⇒ ∀n(x(n)Ey(n)).

Fact: Eω0 ∼B Rω/Qω.

Theorem (Hjorth-Kechris, 1997)

If E ≤B Eω0 , then E ≤B E0 or E ∼B Eω0 .
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Sequence equivalence relations

Definition

Let G be a Borel subgroup of Rω, then the Borel equivalence
relation Rω/G is defined by

x is equivalent to y ⇐⇒ x− y ∈ G.

Fact: E1 = Rω/c00 = Rω/R<ω, Eω0 ∼B Rω/Qω.
Denote

c0 = {x ∈ Rω : lim
n→∞

|x(n)| = 0};

`p = {x ∈ Rω :
∑
n

|x(n)|p < +∞};

`∞ = {x ∈ Rω : sup
n
|x(n)| < +∞}.
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Below `∞

Theorem (Dougherty-Hjorth, 1999)

For p, q ∈ [1 +∞), p ≤ q ⇐⇒ Rω/`p ≤B Rω/`q.

Theorem (D. 2012)

For p ∈ (0, 1], we have Rω/`p ∼B Rω/`1.

Theorem (Rosendal, 2005)

Every Kσ equivalence relation on a Polish space is ≤B Rω/`∞.

Corollary

E1 and Rω/`p are ≤B Rω/`∞.
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Rω/c0

Theorem (Hjorth, 2000)

For p ∈ [1,+∞), Rω/`p and Rω/c0 are ≤B incomparable.

Fact

Eω0 ≤B Rω/c0.
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=+

Definition

=+ is the equivalence relation on Rω defined by

x =+ y ⇐⇒ {x(n) : n ∈ ω} = {y(n) : n ∈ ω}.

Fact

Eω0 ≤B=+, while =+ and Rω/c0 are Borel incomparable.
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Polish G-spaces and orbit equivalence relations

Definition

Polish group: A topological group whose underlying space is
Polish.

G: Polish group,
X: Polish space,
a : G×X → X: continuous G-action on X.

Definition

Orbit equivalence relation:

xEXG y ⇐⇒ ∃g ∈ G(g · x = y).

Any EXG is Σ1
1 equivalence relation.
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Σ1
1 equivalence relations

Theorem (Kechris-Louveau, 1997)

E1 6≤B EXG for any Polish G-space X.

E0, E1, Rω/`p, Rω/`∞: Fσ equivalence relations;
Eω0 , Rω/c0, =+: Π0

3 equivalence relations.
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Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

1 Iso/Isocpt: isometry among Polish/compact metric spaces

2 Hom/Homcpt: homeomorphism ...

3 Lip/Lipcpt: Lipschitz isomorphism ...

4 Uni/Unicpt: Uniform homeomorphism ...

Note: Unicpt = Homcpt.
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Coding Polish metric spaces

Definition

Let X ⊆ Rω×ω consisting of elements r = (ri,j) such that

(1) ∀i, j ∈ ω (ri,j ≥ 0 ∧ (ri,j = 0 ⇐⇒ i = j));

(2) ∀i, j ∈ ω (ri,j = rj,i);

(3) ∀i, j, k ∈ ω (ri,j ≤ ri,k + rj,k).

X is a Polish subspace of Rω×ω.
Denote Xr the completion of (ω, r).

Definition

Xcpt = {r ∈ X : Xr is compact}.
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Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ∼B id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso ∼B Homcpt.

Fact

Hom is an Σ1
2 equivalence relation on X.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ∼B id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso ∼B Homcpt.

Fact

Hom is an Σ1
2 equivalence relation on X.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ∼B id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso ∼B Homcpt.

Fact

Hom is an Σ1
2 equivalence relation on X.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

• id(1)
• id(2)

...

• id(ω)
• id(R)∼B Isocpt

• E0
```

```
```

`E1 •
   

   
   

 • Eω0
HH

HH
• `1
•
• `p

• `∞

•

�
�
�
�
�
�

• c0

PP
PP

PP=+ •

PP
PP

PP• E
X
G∼B Iso ∼B Homcpt

!!
!!

!!
!!

�
�
�
�
• Σ1

1

@
@

@
@

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Lipschitz isomorphism and uniform homeomorphsim

Theorem (Rosendal, 2005)

Lipcpt ∼B Rω/`∞.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Lip ∼B Uni are uinversal Σ1
1 equivalence relations.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Lipschitz isomorphism and uniform homeomorphsim

Theorem (Rosendal, 2005)

Lipcpt ∼B Rω/`∞.

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Lip ∼B Uni are uinversal Σ1
1 equivalence relations.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

• id(1)
• id(2)

...

• id(ω)
• id(R)∼B Isocpt

• E0
```

```
```

`E1 •
   

   
   

 • Eω0
HH

HH
• `1
•
• `p

• `∞∼B Lipcpt

•

�
�
�
�
�
�

• c0

PP
PP

PP=+ •

PP
PP

PP• E
X
G∼B Iso ∼B Unicpt

!!
!!

!!
!!

�
�
�
�
• Σ1

1∼B Lip ∼B Uni

@
@

@
@

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Outline

1 Borel reduction

2 Classifying Polish metric spaces

3 Cauchy sequence equivalence relation

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction
Classifying Polish metric spaces

Cauchy sequence equivalence relation

Cauchy sequence equivalence relation

Fact

Let r, s ∈ X. Then the following are equivalent:

(a) (ω, r) and (ω, s) have the same set of Cauchy sequences;

(b) there exists a homeomorphism ϕ : Xr → Xs with
ϕ � ω = id(ω).

Definition

Cauchy sequence equivalence relation: For r, s ∈ X, rEcss iff
(ω, r) and (ω, s) have the same set of Cauchy sequences.

Theorem (D.-Gu, 2018)

Ecs is a Π1
1-complete equivalence relation. So Ecs and Lip (or

Uni) are Borel incomparable.
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Restriction on compact metric spaces

Denote Ecsc = Ecs � Xcpt.

Theorem (D.-Gu, 2018)

1 Ecsc is Π0
3-equivalence relation;

2 Ecsc ∼ EXG for some Polish group G and Polish G-space X;

3 Rω/c0 ≤B Ecsc;

4 =+≤B Ecsc.

Question: Does Rω/`1 ≤B Ecsc?
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• id(1)
• id(2)

...

• id(ω)
• id(R)
• E0
```

```
```

`E1 •
   

   
   

 • Eω0
HH

HH
• `1
•
• `p

• `∞

•

�
�
�
�
�
�

• c0

PP
PP

PP=+ •

PP
PP

PP• Iso ∼B Homcpt = Unicpt

!!
!!

!!
!!

�
�
�
�
• Lip ∼B Uni

@
@

@
@

• Ecs

�
�
� ```
`@̀@�
�
�
�
�

•
Ecsc
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Some invariant subsets of Ecsc

Xn = {r ∈ Xcpt : card(X
′
r) = n},

Xω = {r ∈ Xcpt : card(X
′′
r) = 1}.

Fact

r ∈ Xn ⇐⇒ Xr
∼= ω · n+ 1,

r ∈ Xω ⇐⇒ Xr
∼= ω2 + 1.

Y = {r ∈ Xω : Xr = ω}.
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• id(1)
• id(2)

...

• id(ω) ∼B Ecsc � X1

• id(R)
• E0 ∼B Ecsc � Xn (n ≥ 2)```

```
```

`E1 •
   

   
   

 • Eω0 ∼B Ecsc � Y
HH

HH
• `1
•
• `p

• `∞

•

�
�
�
�
�
�

• c0

PP
PP

PP=+ • ∼B Ecsc � Xω

PP
PP

PP• Iso

!!
!!

!!
!!

�
�
�
�
• Lip

@
@

@
@

• Ecs

�
�
� ```
`@̀@�
�
�
�
�

•
Ecsc
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The end

Thank you!
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