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Borel reduction

Borel sets and Borel functions

Definition
Polish space: a separable, completely metrizable topological space.

Let X,Y be two Polish spaces.

B(X): Borel sets of X is the o-algebra generated by the open sets
of X.

A function f : X — Y is Borel function if f~1(U) is Borel for U
open in Y.
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Borel reduction

Borel hierarchy

2(1) = open, H(l) = closed;
) =F,, II)=Gs;

forl < a < wi,

2 ={J An: An €Y 00 < a};

new

I1° = the complements of X2 sets;

(6%
A =30 N1,
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Borel reduction

Borel reducibility between equivalence relations

Let X,Y be Polish spaces and E, F' equivalence relations on
X, Y respectively.

Definition
E <p F': There is a Borel function 6 : X — Y such that, for all
z,y € X,

By < 0(x)F0(y).

ENBF:EgBFanngBE;
E<pF: E<p Fbutnot F <pFE.
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Borel reduction

31 sets and I} sets

Definition
Let X be a Polish space. A subset A C X is analytic (or 31) if
there is a Polish space Y and a closed subset C' C X X Y such that

reA <= JyeY((z,y) €C).

A subset A C X is co-analytic (or I1}) if X \ 4 is 1.
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Borel reduction

31 sets and I} sets

Definition
Let X be a Polish space. A subset A C X is analytic (or 31) if
there is a Polish space Y and a closed subset C' C X X Y such that

reA <= JyeY((z,y) €C).

A subset A C X is co-analytic (or I1}) if X \ 4 is 1.

Theorem (Suslin)
Let A C X. Then A is Borel iff it is both Z% and H%.

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction

1st dichotomy theorem

We say an equivalence relation £ on X is Borel, > or H% if
{(z,y) € X?: xEy} is so in X2

Theorem (Silver, 1980)

Let E be a I} equivalence relation. Then

E SB id(w) or ld(R) SB E.
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Borel reduction
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Borel reduction

2nd dichotomy theorem

Definition

E)y is the equivalence relation on {0, 1}* defined by

zEyy <= 3ImV¥n > m(z(n) =y(n)).

Fact: Fy ~p R/Q
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Borel reduction

2nd dichotomy theorem

Definition

E)y is the equivalence relation on {0, 1}* defined by

zEyy <= 3ImV¥n > m(z(n) =y(n)).

Fact: Fy ~p R/Q

Theorem (Harrington-Kechris-Louveau, 1990)

Let E be a Borel equivalence relation. Then either E <p id(R) or
Ey <p E.
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Borel reduction

Eo
id(R)
: id(w)

id(2)
id(1)

L. Ding On equivalence relations generated by Cauchy sequences



Borel reduction

3rd dichotomy theorem

Definition
FE is the equivalence relation on R defined by

zE1y <= 3ImVn > m(xz(n) =y(n)).

Fact: E; = R“/coo, where ¢pp = Un R™.
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Borel reduction

3rd dichotomy theorem

Definition
FE is the equivalence relation on R defined by

zE1y <= 3ImVn > m(xz(n) =y(n)).

Fact: E; = R“/coo, where ¢pp = Un R™.

Theorem (Kechris-Louveau, 1997)
If E<p Fq, then E <p Ey or E ~p Ej.
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Borel reduction

Eq

Eo
id(R)
: id(w)

id(2)
id(1)
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Borel reduction

4th dichotomy theorem

Definition

Let E be an equivalence relation on X. The equivalence relation
E¥ on X% defined by
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Borel reduction

4th dichotomy theorem

Definition
Let E be an equivalence relation on X. The equivalence relation
E¥ on X% defined by

Fact: Ef ~p R¥/Q".

Theorem (Hjorth-Kechris, 1997)
IfE <p Ef, then E <p Ey or E ~p Ej.
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Borel reduction

o Ey
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Borel reduction

Sequence equivalence relations

Definition
Let G be a Borel subgroup of R¥, then the Borel equivalence
relation R* /G is defined by

x is equivalent to y <— z —y € G.

Fact: E; = R¥/coo = R¥/R<¥, E¥ ~p R¥/Q¥.
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Borel reduction

Sequence equivalence relations

Definition

Let G be a Borel subgroup of R¥, then the Borel equivalence
relation R* /G is defined by

x is equivalent to y <— z —y € G.

Fact: ) = R¥/cgo = R¥/R<¥, E¥ ~p R®/Q¥.
Denote
co={x € R¥: lim |z(n)| =0}
n—0o0

by ={x cR¥: Z\x )P < +o0};

loo = {z € R¥ : sup|z(n)| < +oo}.
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Borel reduction

Below £

Theorem (Dougherty-Hjorth, 1999)
Forp,g€[l+00), p<q < R¥/{, <pR¥/{,.
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Borel reduction

Below /.,

Theorem (Dougherty-Hjorth, 1999)
Forp,g€[l+00), p<q < R¥/{, <pR¥/{,.

Theorem (D. 2012)
For p € (0,1], we have R* /¢, ~g R¥ /{;.
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Borel reduction

Below /.,

Theorem (Dougherty-Hjorth, 1999)
Forp,g€[l+00), p<q < R¥/{, <pR¥/{,.

Theorem (D. 2012)
For p € (0,1], we have R* /¢, ~g R¥ /{;.

Theorem (Rosendal, 2005)

Every K, equivalence relation on a Polish space is <p R“ /l+,.

E, and R¥ /), are <p R /l«.
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Borel reduction

id(R)
: id(w)

id(2)
id(1)
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Borel reduction

Theorem (Hjorth, 2000)
Forp € [1,400), R¥/{, and R¥/cy are <p incomparable.
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Borel reduction

Theorem (Hjorth, 2000)
Forp € [1,400), RY/¢, and R¥/cy are <p incomparable.
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Borel reduction

id(R)
: id(w)

id(2)
id(1)
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Borel reduction

Definition

=7 is the equivalence relation on R* defined by

r="y < {z(n):necw}={yn):necuwl.
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Borel reduction

Definition

=7 is the equivalence relation on R* defined by

r="y < {z(n):necw}={yn):necuwl.

Ey <p=T, while =% and R¥/c are Borel incomparable.
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Borel reduction
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Borel reduction

Polish GG-spaces and orbit equivalence relations

Definition

Polish group: A topological group whose underlying space is
Polish.
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Borel reduction

Polish GG-spaces and orbit equivalence relations

Definition

Polish group: A topological group whose underlying space is
Polish.

G Polish group,
X: Polish space,
a: G x X — X: continuous G-action on X.

Definition

Orbit equivalence relation:

tESy = JgeGlg-z=1y).
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Borel reduction

Polish GG-spaces and orbit equivalence relations

Definition

Polish group: A topological group whose underlying space is
Polish.

G Polish group,
X: Polish space,
a: G x X — X: continuous G-action on X.

Definition

Orbit equivalence relation:

tESy = JgeGlg-z=1y).

Any EZ is 3 equivalence relation.
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Borel reduction

31 equivalence relations

Theorem (Kechris-Louveau, 1997)
Ey £p Eé for any Polish G-space X .
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Borel reduction

31 equivalence relations

Theorem (Kechris-Louveau, 1997)
Ey £p Eé for any Polish G-space X .

Ey, E1, R¥/l,, R¥/l«: Fy equivalence relations;
Eg, R¥/cy, =T: TIY equivalence relations.
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Borel reduction
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Classifying Polish metric spaces
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© Classifying Polish metric spaces
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

(1) Iso/Isont: isometry among Polish/compact metric spaces
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

(1) Iso/Isont: isometry among Polish/compact metric spaces

(2] Hom/Homcpt: homeomorphism ...
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

(1) Iso/Isont: isometry among Polish/compact metric spaces
(2] Hom/Homcpt: homeomorphism ...

(3 ) Lip/LipCpt: Lipschitz isomorphism ...
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

(1) Iso/Isont: isometry among Polish/compact metric spaces
(2] Hom/Homcpt: homeomorphism ...
(3 ) Lip/LipCpt: Lipschitz isomorphism ...

(%] Uni/UniCpt: Uniform homeomorphism ...
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Classifying Polish metric spaces

Classification problems for Polish/compact metric spaces

Definition

Polish metric space: separable complete metric space.

(1) Iso/Isont: isometry among Polish/compact metric spaces
(2] Hom/Homcpt: homeomorphism ...
(3 ) Lip/LipCpt: Lipschitz isomorphism ...

(%] Uni/UniCpt: Uniform homeomorphism ...

Note: Ul’licpt = HOmet.
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Classifying Polish metric spaces

Coding Polish metric spaces

Definition

Let X C R“*“ consisting of elements r = (r; ;) such that
(1) Vi,j €w(ri; 20N (ri; =0 < i=7j));

(2) Vi,j ew(rij =1j4);

(3) Vi,j,k€w(rij <rikp+7Tik).
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Classifying Polish metric spaces

Coding Polish metric spaces

Definition

Let X C R“*“ consisting of elements r = (r; ;) such that
(1) Vi,j €w(ri; 20N (ri; =0 < i=7j));

(2) Vi,j ew(rij =1j4);

(3) Vi,j,k€w(rij <rikp+7Tik).

X is a Polish subspace of R¥*¥,
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Classifying Polish metric spaces

Coding Polish metric spaces

Definition

Let X C R“*“ consisting of elements r = (r; ;) such that
(1) Vi,j € w(rij = 0A (r; =0 <= i=j));

(2) Vi, j € w(rij =7j4);

(3) Vi, j,k €w(rij <mig+Tik)

X is a Polish subspace of R¥*¥,
Denote X, the completion of (w, 7).

Definition

Xept = {r € X: X, is compact}.
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Classifying Polish metric spaces

Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ~p id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.
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Classifying Polish metric spaces

Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ~p id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso ~p Hompg.
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Classifying Polish metric spaces

Isometry and Homeomorpism

Theorem (Gromov)

Isocpt ~p id(R).

Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso ~p Hompg.

Hom is an 34 equivalence relation on X.
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Classifying Polish metric spaces
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Classifying Polish metric spaces

Lipschitz isomorphism and uniform homeomorphsim

Theorem (Rosendal, 2005)
Libeps ~B B/,
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Classifying Polish metric spaces

Lipschitz isomorphism and uniform homeomorphsim

Theorem (Rosendal, 2005)
Libeps ~B B/,

Theorem (Ferenczi-Louveau-Rosendal, 2009)

Lip ~p Uni are uinversal £} equivalence relations.
p 1
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Classifying Polish metric spaces

E%NB Lip ~p Uni
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Cauchy sequence equivalence relation
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Cauchy sequence equivalence relation

Cauchy sequence equivalence relation

Let r,s € X. Then the following are equivalent:
(a) (w,r) and (w, s) have the same set of Cauchy sequences;

(b) there exists a homeomorphism ¢ : X, — X with
o [ w=id(w).
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Cauchy sequence equivalence relation

Cauchy sequence equivalence relation

Let r,s € X. Then the following are equivalent:

(a) (w,r) and (w, s) have the same set of Cauchy sequences;

(b) there exists a homeomorphism ¢ : X, — X with
o [ w=id(w).

Cauchy sequence equivalence relation: For r, s € X, rFgs iff
(w,r) and (w, s) have the same set of Cauchy sequences.

A\
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Cauchy sequence equivalence relation

Cauchy sequence equivalence relation

Let r,s € X. Then the following are equivalent:
(a) (w,r) and (w, s) have the same set of Cauchy sequences;

(b) there exists a homeomorphism ¢ : X, — X with
o [ w=id(w).

Definition
Cauchy sequence equivalence relation: For r, s € X, rFgs iff
(w,r) and (w, s) have the same set of Cauchy sequences.

Theorem (D.-Gu, 2018)

Es is a ITl-complete equivalence relation. So E.s and Lip (or
Uni) are Borel incomparable.
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-

Theorem (D.-Gu, 2018)

Q FEo is Hg—equiva/ence relation;
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-

Theorem (D.-Gu, 2018)

Q FEo is Hg—equiva/ence relation;
Q Eeoe ~ Eg for some Polish group G and Polish G-space X;
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-

Theorem (D.-Gu, 2018)
Q FEo is Hg—equiva/ence relation;
Q Eeoe ~ Eg for some Polish group G and Polish G-space X;
Q R¥/co < Eegc;
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-

Theorem (D.-Gu, 2018)

Q FEo is Hg—equiva/ence relation;

Q Eeoe ~ Eg for some Polish group G and Polish G-space X;
© RY/co <p Ecse)

Q ="<p Fes.
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Cauchy sequence equivalence relation

Restriction on compact metric spaces

Denote Ecsc = Ecs | cht-

Theorem (D.-Gu, 2018)

Q FEo is Hg—equiva/ence relation;

Q Eeoe ~ Eg for some Polish group G and Polish G-space X;
© RY/co <p Ecse)

Q ="<p Fes.

Question: Does R¥/{; <p Fcs?
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Cauchy sequence equivalence relation
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Cauchy sequence equivalence relation

Some invariant subsets of E.

X, = {r € Xept : card(X,) = n},
Xy = {r € Xept : card(ylrl) =1}

reX, < X, Zw-n+1,

reX, < X,~w’+1.

Y={reX,: X, =w}
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Cauchy sequence equivalence relation

E,y
0~B E(:sc [ X’n (’fl > 2)
id(R)
ld(w) ~B Ecse | X4

f id(2)
id(1)
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Cauchy sequence equivalence relation

The end

Thank you!
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