On equivalence relations generated by Cauchy sequences in countable metric spaces CTFM 2019, Wuhan University of Technology

### Longyun Ding

School of Mathematical Sciences Nankai University

23 March 2019

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Classifying Polish metric spaces Cauchy sequence equivalence relation

# Outline



2 Classifying Polish metric spaces

3 Cauchy sequence equivalence relation

・ロン ・回 と ・ヨン ・ヨン

臣

# Borel sets and Borel functions

#### Definition

Polish space: a separable, completely metrizable topological space.

Let X, Y be two Polish spaces.

### Definition

 $\mathbf{B}(X)$ : Borel sets of X is the  $\sigma$ -algebra generated by the open sets of X.

### Definition

A function  $f: X \to Y$  is Borel function if  $f^{-1}(U)$  is Borel for U open in Y.

**Classifying Polish metric spaces** Cauchy sequence equivalence relation

# Borel hierarchy

$$oldsymbol{\Sigma}_1^0 = ext{open}, \quad oldsymbol{\Pi}_1^0 = ext{closed};$$
  
 $oldsymbol{\Sigma}_2^0 = F_\sigma, \quad oldsymbol{\Pi}_2^0 = G_\delta;$   
for  $1 \le lpha < \omega_1$ ,  
 $oldsymbol{\Sigma}_{lpha}^0 = \{\bigcup_{n \in \omega} A_n : A_n \in oldsymbol{\Pi}_{lpha_n}^0, lpha_n < lpha\};$   
 $oldsymbol{\Pi}_{lpha}^0 = ext{ the complements of } oldsymbol{\Sigma}_{lpha}^0 ext{ sets};$ 

• 0

$$oldsymbol{\Delta}_{lpha}^{0} = oldsymbol{\Sigma}_{lpha}^{0} \cap oldsymbol{\Pi}_{lpha}^{0}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# Borel reducibility between equivalence relations

Let X,Y be Polish spaces and E,F equivalence relations on X,Y respectively.

### Definition

 $E \leq_B F$  : There is a Borel function  $\theta: X \to Y$  such that, for all  $x,y \in X$  ,

$$xEy \iff \theta(x)F\theta(y).$$

 $E \sim_B F: E \leq_B F$  and  $F \leq_B E$ ;  $E <_B F: E \leq_B F$  but not  $F \leq_B E$ .

Classifying Polish metric spaces Cauchy sequence equivalence relation

# $\mathbf{\Sigma}_1^1$ sets and $\mathbf{\Pi}_1^1$ sets

### Definition

Let X be a Polish space. A subset  $A \subseteq X$  is **analytic** (or  $\Sigma_1^1$ ) if there is a Polish space Y and a closed subset  $C \subseteq X \times Y$  such that

$$x \in A \iff \exists y \in Y((x,y) \in C).$$

A subset  $A \subseteq X$  is **co-analytic** (or  $\Pi_1^1$ ) if  $X \setminus A$  is  $\Sigma_1^1$ .

Theorem (Suslin)

Let  $A \subseteq X$ . Then A is Borel iff it is both  $\Sigma_1^1$  and  $\Pi_1^1$ .

Classifying Polish metric spaces Cauchy sequence equivalence relation

# $\mathbf{\Sigma}_1^1$ sets and $\mathbf{\Pi}_1^1$ sets

### Definition

Let X be a Polish space. A subset  $A \subseteq X$  is **analytic** (or  $\Sigma_1^1$ ) if there is a Polish space Y and a closed subset  $C \subseteq X \times Y$  such that

$$x \in A \iff \exists y \in Y((x,y) \in C).$$

A subset  $A \subseteq X$  is **co-analytic** (or  $\Pi_1^1$ ) if  $X \setminus A$  is  $\Sigma_1^1$ .

Theorem (Suslin)

Let  $A \subseteq X$ . Then A is Borel iff it is both  $\Sigma_1^1$  and  $\Pi_1^1$ .

# 1st dichotomy theorem

We say an equivalence relation E on X is Borel,  $\Sigma_1^1$ , or  $\Pi_1^1$  if  $\{(x,y) \in X^2 : xEy\}$  is so in  $X^2$ .

#### Theorem (Silver, 1980)

Let E be a  $\Pi_1^1$  equivalence relation. Then

 $E \leq_B \operatorname{id}(\omega)$  or  $\operatorname{id}(\mathbb{R}) \leq_B E$ .

イロン イボン イヨン イヨン

Classifying Polish metric spaces Cauchy sequence equivalence relation



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

# 2nd dichotomy theorem

### Definition

 $E_0$  is the equivalence relation on  $\{0,1\}^\omega$  defined by

$$xE_0y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_0 \sim_B \mathbb{R}/\mathbb{Q}$ .

#### Theorem (Harrington-Kechris-Louveau, 1990)

Let E be a Borel equivalence relation. Then either  $E \leq_B id(\mathbb{R})$  or  $E_0 \leq_B E$ .

# 2nd dichotomy theorem

### Definition

 $E_0$  is the equivalence relation on  $\{0,1\}^\omega$  defined by

$$xE_0y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_0 \sim_B \mathbb{R}/\mathbb{Q}$ .

Theorem (Harrington-Kechris-Louveau, 1990)

Let *E* be a Borel equivalence relation. Then either  $E \leq_B id(\mathbb{R})$  or  $E_0 \leq_B E$ .

イロン イボン イヨン イヨン

Classifying Polish metric spaces Cauchy sequence equivalence relation



L. Ding On equivalence relations generated by Cauchy sequences

# 3rd dichotomy theorem

### Definition

 $E_1$  is the equivalence relation on  $\mathbb{R}^\omega$  defined by

$$xE_1y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_1 = \mathbb{R}^{\omega}/c_{00}$ , where  $c_{00} = \bigcup_n \mathbb{R}^n$ .

#### Theorem (Kechris-Louveau, 1997)

If  $E \leq_B E_1$ , then  $E \leq_B E_0$  or  $E \sim_B E_1$ .

# 3rd dichotomy theorem

### Definition

 $E_1$  is the equivalence relation on  $\mathbb{R}^\omega$  defined by

$$xE_1y \iff \exists m \forall n \ge m(x(n) = y(n)).$$

**Fact:**  $E_1 = \mathbb{R}^{\omega}/c_{00}$ , where  $c_{00} = \bigcup_n \mathbb{R}^n$ .

### Theorem (Kechris-Louveau, 1997)

If  $E \leq_B E_1$ , then  $E \leq_B E_0$  or  $E \sim_B E_1$ .

Classifying Polish metric spaces Cauchy sequence equivalence relation



◆□→ ◆□→ ◆注→ ◆注→ □注□

# 4th dichotomy theorem

### Definition

Let E be an equivalence relation on X. The equivalence relation  $E^\omega$  on  $X^\omega$  defined by

$$x E^{\omega} y \iff \forall n(x(n) E y(n)).$$

**Fact:**  $E_0^{\omega} \sim_B \mathbb{R}^{\omega} / \mathbb{Q}^{\omega}$ .

Theorem (Hjorth-Kechris, 1997)

If  $E \leq_B E_0^{\omega}$ , then  $E \leq_B E_0$  or  $E \sim_B E_0^{\omega}$ .

・ロン ・四 と ・ ヨ と ・ ヨ と

# 4th dichotomy theorem

#### Definition

Let E be an equivalence relation on X. The equivalence relation  $E^\omega$  on  $X^\omega$  defined by

$$x E^{\omega} y \iff \forall n(x(n) E y(n)).$$

**Fact:**  $E_0^{\omega} \sim_B \mathbb{R}^{\omega} / \mathbb{Q}^{\omega}$ .

Theorem (Hjorth-Kechris, 1997)

If  $E \leq_B E_0^{\omega}$ , then  $E \leq_B E_0$  or  $E \sim_B E_0^{\omega}$ .

Classifying Polish metric spaces Cauchy sequence equivalence relation



L. Ding On equivalence relations generated by Cauchy sequences

Sequence equivalence relations

#### Definition

Let G be a Borel subgroup of  $\mathbb{R}^\omega,$  then the Borel equivalence relation  $\mathbb{R}^\omega/G$  is defined by

x is equivalent to  $y \iff x - y \in G$ .

Fact:  $E_1 = \mathbb{R}^{\omega}/c_{00} = \mathbb{R}^{\omega}/\mathbb{R}^{<\omega}, \quad E_0^{\omega} \sim_B \mathbb{R}^{\omega}/\mathbb{Q}^{\omega}.$ Denote

$$c_0 = \{x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} |x(n)| = 0\};$$
  
$$\ell_p = \{x \in \mathbb{R}^{\omega} : \sum_n |x(n)|^p < +\infty\};$$
  
$$\ell_{\infty} = \{x \in \mathbb{R}^{\omega} : \sup_n |x(n)| < +\infty\}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Sequence equivalence relations

#### Definition

Let G be a Borel subgroup of  $\mathbb{R}^\omega,$  then the Borel equivalence relation  $\mathbb{R}^\omega/G$  is defined by

x is equivalent to  $y \iff x - y \in G$ .

Fact:  $E_1 = \mathbb{R}^{\omega}/c_{00} = \mathbb{R}^{\omega}/\mathbb{R}^{<\omega}, \quad E_0^{\omega} \sim_B \mathbb{R}^{\omega}/\mathbb{Q}^{\omega}.$ Denote

$$c_0 = \{x \in \mathbb{R}^{\omega} : \lim_{n \to \infty} |x(n)| = 0\};$$
  
$$\ell_p = \{x \in \mathbb{R}^{\omega} : \sum_n |x(n)|^p < +\infty\};$$
  
$$\ell_{\infty} = \{x \in \mathbb{R}^{\omega} : \sup_n |x(n)| < +\infty\}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Classifying Polish metric spaces Cauchy sequence equivalence relation

# Below $\ell_\infty$

### Theorem (Dougherty-Hjorth, 1999)

For  $p, q \in [1 + \infty)$ ,  $p \leq q \iff \mathbb{R}^{\omega}/\ell_p \leq_B \mathbb{R}^{\omega}/\ell_q$ .

### Theorem (D. 2012)

For  $p \in (0,1]$ , we have  $\mathbb{R}^{\omega}/\ell_p \sim_B \mathbb{R}^{\omega}/\ell_1$ .

#### Theorem (Rosendal, 2005)

Every  $K_{\sigma}$  equivalence relation on a Polish space is  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ 

Corollary

 $E_1$  and  $\mathbb{R}^{\omega}/\ell_p$  are  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ .

Classifying Polish metric spaces Cauchy sequence equivalence relation

# Below $\ell_\infty$

### Theorem (Dougherty-Hjorth, 1999)

For 
$$p,q \in [1+\infty)$$
,  $p \leq q \iff \mathbb{R}^{\omega}/\ell_p \leq_B \mathbb{R}^{\omega}/\ell_q$ .

## Theorem (D. 2012)

For 
$$p \in (0,1]$$
, we have  $\mathbb{R}^{\omega}/\ell_p \sim_B \mathbb{R}^{\omega}/\ell_1$ .

### Theorem (Rosendal, 2005)

Every  $K_{\sigma}$  equivalence relation on a Polish space is  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ 

#### Corollary

 $E_1$  and  $\mathbb{R}^{\omega}/\ell_p$  are  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ .

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Classifying Polish metric spaces Cauchy sequence equivalence relation

# Below $\ell_\infty$

### Theorem (Dougherty-Hjorth, 1999)

For 
$$p,q \in [1+\infty)$$
,  $p \leq q \iff \mathbb{R}^{\omega}/\ell_p \leq_B \mathbb{R}^{\omega}/\ell_q$ .

## Theorem (D. 2012)

For 
$$p \in (0,1]$$
, we have  $\mathbb{R}^{\omega}/\ell_p \sim_B \mathbb{R}^{\omega}/\ell_1$ .

### Theorem (Rosendal, 2005)

Every  $K_{\sigma}$  equivalence relation on a Polish space is  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ .

### Corollary

 $E_1$  and  $\mathbb{R}^{\omega}/\ell_p$  are  $\leq_B \mathbb{R}^{\omega}/\ell_{\infty}$ .

**Classifying Polish metric spaces** Cauchy sequence equivalence relation



On equivalence relations generated by Cauchy sequences

Classifying Polish metric spaces Cauchy sequence equivalence relation



## Theorem (Hjorth, 2000)

# For $p \in [1, +\infty)$ , $\mathbb{R}^{\omega}/\ell_p$ and $\mathbb{R}^{\omega}/c_0$ are $\leq_B$ incomparable.

#### Fact

 $E_0^{\omega} \leq_B \mathbb{R}^{\omega}/c_0.$ 

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Classifying Polish metric spaces Cauchy sequence equivalence relation



## Theorem (Hjorth, 2000)

For  $p \in [1, +\infty)$ ,  $\mathbb{R}^{\omega}/\ell_p$  and  $\mathbb{R}^{\omega}/c_0$  are  $\leq_B$  incomparable.

### Fact

 $E_0^{\omega} \leq_B \mathbb{R}^{\omega}/c_0.$ 

L. Ding On equivalence relations generated by Cauchy sequences

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

**Classifying Polish metric spaces** Cauchy sequence equivalence relation



On equivalence relations generated by Cauchy sequences

Classifying Polish metric spaces Cauchy sequence equivalence relation



## Definition

## $=^+$ is the equivalence relation on $\mathbb{R}^\omega$ defined by

$$x=^+y\iff \{x(n):n\in\omega\}=\{y(n):n\in\omega\}.$$

#### Fact

 $E_0^\omega \leq_B =^+$ , while  $=^+$  and  $\mathbb{R}^\omega/c_0$  are Borel incomparable.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Classifying Polish metric spaces Cauchy sequence equivalence relation



## Definition

 $=^+$  is the equivalence relation on  $\mathbb{R}^\omega$  defined by

$$x=^+y\iff \{x(n):n\in\omega\}=\{y(n):n\in\omega\}.$$

#### Fact

 $E_0^{\omega} \leq_B = +$ , while =+ and  $\mathbb{R}^{\omega}/c_0$  are Borel incomparable.

**Classifying Polish metric spaces** Cauchy sequence equivalence relation



On equivalence relations generated by Cauchy sequences

# Polish G-spaces and orbit equivalence relations

### Definition

**Polish group:** A topological group whose underlying space is Polish.

 $\begin{array}{l} G: \mbox{ Polish group,} \\ X: \mbox{ Polish space,} \\ a: G \times X \to X: \mbox{ continuous } G\mbox{-action on } X \end{array}$ 

Definition

Orbit equivalence relation:

$$xE_G^X y \iff \exists g \in G(g \cdot x = y).$$

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

・ロット (雪) (目) (日)

# Polish G-spaces and orbit equivalence relations

### Definition

**Polish group:** A topological group whose underlying space is Polish.

 $\begin{array}{l} G: \mbox{ Polish group,} \\ X: \mbox{ Polish space,} \\ a:G\times X\to X: \mbox{ continuous } G\mbox{-action on } X. \end{array}$ 

Definition

Orbit equivalence relation:

$$xE_G^X y \iff \exists g \in G(g \cdot x = y).$$

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

# Polish G-spaces and orbit equivalence relations

### Definition

**Polish group:** A topological group whose underlying space is Polish.

 $\begin{array}{l} G: \mbox{ Polish group,} \\ X: \mbox{ Polish space,} \\ a:G\times X\to X: \mbox{ continuous } G\mbox{-action on } X. \end{array}$ 

### Definition

Orbit equivalence relation:

$$xE_G^X y \iff \exists g \in G(g \cdot x = y).$$

Any  $E_G^X$  is  $\Sigma_1^1$  equivalence relation.

# $\Sigma_1^1$ equivalence relations

### Theorem (Kechris-Louveau, 1997)

 $E_1 \not\leq_B E_G^X$  for any Polish G-space X.

 $E_0$ ,  $E_1$ ,  $\mathbb{R}^{\omega}/\ell_p$ ,  $\mathbb{R}^{\omega}/\ell_{\infty}$ :  $F_{\sigma}$  equivalence relations;  $E_0^{\omega}$ ,  $\mathbb{R}^{\omega}/c_0$ , =<sup>+</sup>:  $\Pi_3^0$  equivalence relations.

# $\Sigma_1^1$ equivalence relations

### Theorem (Kechris-Louveau, 1997)

 $E_1 \not\leq_B E_G^X$  for any Polish G-space X.

 $E_0, E_1, \mathbb{R}^{\omega}/\ell_p, \mathbb{R}^{\omega}/\ell_{\infty}$ :  $F_{\sigma}$  equivalence relations;  $E_0^{\omega}, \mathbb{R}^{\omega}/c_0, =^+$ :  $\Pi_3^0$  equivalence relations.

・ロン ・回 と ・ヨン ・ヨン

**Classifying Polish metric spaces** Cauchy sequence equivalence relation



On equivalence relations generated by Cauchy sequences

# Outline





2 Classifying Polish metric spaces

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

### Definition

Polish metric space: separable complete metric space.

- Iso/Iso<sub>cpt</sub>: isometry among Polish/compact metric spaces
- 2 Hom/Hom<sub>cpt</sub>: homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- Uni/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

### Definition

Polish metric space: separable complete metric space.

- **()**  $Iso/Iso_{cpt}$ : isometry among Polish/compact metric spaces
- 2 Hom/Hom<sub>cpt</sub>: homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- Ini/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

#### Definition

Polish metric space: separable complete metric space.

- Iso/Iso<sub>cpt</sub>: isometry among Polish/compact metric spaces
- $2 \operatorname{Hom}/\operatorname{Hom}_{\operatorname{cpt}}$ : homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- Uni/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

### Definition

Polish metric space: separable complete metric space.

- Iso/Iso<sub>cpt</sub>: isometry among Polish/compact metric spaces
- $\ \ \mathbf{O} \quad \mathrm{Hom}/\mathrm{Hom}_{\mathrm{cpt}}$ : homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- Uni/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

#### Definition

Polish metric space: separable complete metric space.

- Iso/Iso<sub>cpt</sub>: isometry among Polish/compact metric spaces
- ❷ Hom/Hom<sub>cpt</sub>: homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- $\bigcirc$  Uni/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

### Definition

Polish metric space: separable complete metric space.

- Iso/Iso<sub>cpt</sub>: isometry among Polish/compact metric spaces
- ❷ Hom/Hom<sub>cpt</sub>: homeomorphism ...
- $\textcircled{O} Lip/Lip_{cpt}: Lipschitz isomorphism \dots$
- Uni/Uni<sub>cpt</sub>: Uniform homeomorphism ...

Note:  $Uni_{cpt} = Hom_{cpt}$ .

# Coding Polish metric spaces

### Definition

Let  $\mathbb{X} \subseteq \mathbb{R}^{\omega \times \omega}$  consisting of elements  $r = (r_{i,j})$  such that (1)  $\forall i, j \in \omega (r_{i,j} \ge 0 \land (r_{i,j} = 0 \iff i = j));$ (2)  $\forall i, j \in \omega (r_{i,j} = r_{j,i});$ (3)  $\forall i, j, k \in \omega (r_{i,j} \le r_{i,k} + r_{j,k}).$ 

 $\mathbb X$  is a Polish subspace of  $\mathbb R^{\omega imes \omega}$ . Denote  $\overline X_r$  the completion of  $(\omega, r)$ .

### Definition

 $\mathbb{X}_{cpt} = \{r \in \mathbb{X} : \overline{X}_r \text{ is compact}\}.$ 

# Coding Polish metric spaces

#### Definition

Let  $\mathbb{X} \subseteq \mathbb{R}^{\omega \times \omega}$  consisting of elements  $r = (r_{i,j})$  such that (1)  $\forall i, j \in \omega (r_{i,j} \ge 0 \land (r_{i,j} = 0 \iff i = j));$ (2)  $\forall i, j \in \omega (r_{i,j} = r_{j,i});$ (3)  $\forall i, j, k \in \omega (r_{i,j} \le r_{i,k} + r_{j,k}).$ 

X is a Polish subspace of  $\mathbb{R}^{\omega \times \omega}$ . Denote  $\overline{X}_r$  the completion of  $(\omega, r)$ 

#### Definition

 $\mathbb{X}_{cpt} = \{r \in \mathbb{X} : \overline{X}_r \text{ is compact}\}.$ 

# Coding Polish metric spaces

### Definition

Let  $\mathbb{X} \subseteq \mathbb{R}^{\omega \times \omega}$  consisting of elements  $r = (r_{i,j})$  such that (1)  $\forall i, j \in \omega (r_{i,j} \ge 0 \land (r_{i,j} = 0 \iff i = j));$ (2)  $\forall i, j \in \omega (r_{i,j} = r_{j,i});$ (3)  $\forall i, j, k \in \omega (r_{i,j} \le r_{i,k} + r_{j,k}).$ 

 $\mathbb{X}$  is a Polish subspace of  $\mathbb{R}^{\omega \times \omega}$ . Denote  $\overline{X}_r$  the completion of  $(\omega, r)$ .

### Definition

$$\mathbb{X}_{cpt} = \{r \in \mathbb{X} : \overline{X}_r \text{ is compact}\}.$$

# Isometry and Homeomorpism

### Theorem (Gromov)

Iso<sub>cpt</sub>  $\sim_B$  id( $\mathbb{R}$ ).

### Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

### Theorem (Zielinski, 2016)

Iso  $\sim_B \operatorname{Hom}_{\operatorname{cpt}}$ .

#### Fact

 $\operatorname{Hom}$  is an  $\mathbf{\Sigma}_2^1$  equivalence relation on  $\mathbb{X}$ .

・ロン ・回 と ・ ヨ と ・ ヨ と

# Isometry and Homeomorpism

### Theorem (Gromov)

Iso<sub>cpt</sub>  $\sim_B$  id( $\mathbb{R}$ ).

### Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso  $\sim_B \operatorname{Hom}_{\operatorname{cpt}}$ .

#### Fact

 $\operatorname{Hom}$  is an  $\mathbf{\Sigma}_2^1$  equivalence relation on  $\mathbb{X}$ .

# Isometry and Homeomorpism

## Theorem (Gromov)

Iso<sub>cpt</sub>  $\sim_B$  id( $\mathbb{R}$ ).

## Theorem (Gao-Kechris, 2003)

Iso is a universal orbit equivalence relation.

Theorem (Zielinski, 2016)

Iso  $\sim_B \operatorname{Hom}_{\operatorname{cpt}}$ .

#### Fact

Hom is an  $\Sigma_2^1$  equivalence relation on  $\mathbb{X}$ .

・ロット (雪) (目) (日)



L. Ding On equivalence relations generated by Cauchy sequences

# Lipschitz isomorphism and uniform homeomorphsim

### Theorem (Rosendal, 2005)

 $\operatorname{Lip}_{\operatorname{cpt}} \sim_B \mathbb{R}^{\omega} / \ell_{\infty}.$ 

### Theorem (Ferenczi-Louveau-Rosendal, 2009)

Lip  $\sim_B$  Uni are uinversal  $\Sigma_1^1$  equivalence relations.

Lipschitz isomorphism and uniform homeomorphsim

### Theorem (Rosendal, 2005)

$$\operatorname{Lip}_{\operatorname{cpt}} \sim_B \mathbb{R}^{\omega} / \ell_{\infty}.$$

### Theorem (Ferenczi-Louveau-Rosendal, 2009)

Lip  $\sim_B$  Uni are universal  $\Sigma_1^1$  equivalence relations.

(日) (종) (종) (종) (종)



L. Ding

On equivalence relations generated by Cauchy sequences

# Outline



## 2 Classifying Polish metric spaces

3 Cauchy sequence equivalence relation

・ロン ・回 と ・ヨン ・ヨン

臣

# Cauchy sequence equivalence relation

### Fact

Let  $r, s \in X$ . Then the following are equivalent:

(a)  $(\omega,r)$  and  $(\omega,s)$  have the same set of Cauchy sequences;

#### Definition

**Cauchy sequence equivalence relation:** For  $r, s \in \mathbb{X}$ ,  $rE_{cs}s$  iff  $(\omega, r)$  and  $(\omega, s)$  have the same set of Cauchy sequences.

### Theorem (D.-Gu, 2018)

 $E_{\rm cs}$  is a  $\Pi^1_1$ -complete equivalence relation. So  $E_{\rm cs}$  and Lip (or Uni) are Borel incomparable.

# Cauchy sequence equivalence relation

### Fact

Let  $r, s \in X$ . Then the following are equivalent:

(a)  $(\omega,r)$  and  $(\omega,s)$  have the same set of Cauchy sequences;

(b) there exists a homeomorphism 
$$\varphi : \overline{X}_r \to \overline{X}_s$$
 with  $\varphi \upharpoonright \omega = \mathrm{id}(\omega)$ .

### Definition

Cauchy sequence equivalence relation: For  $r, s \in \mathbb{X}$ ,  $rE_{cs}s$  iff  $(\omega, r)$  and  $(\omega, s)$  have the same set of Cauchy sequences.

### Theorem (D.-Gu, 2018)

 $E_{\rm cs}$  is a  $\Pi_1^1$ -complete equivalence relation. So  $E_{\rm cs}$  and Lip (or Uni) are Borel incomparable.

# Cauchy sequence equivalence relation

#### Fact

Let  $r, s \in X$ . Then the following are equivalent:

(a)  $(\omega,r)$  and  $(\omega,s)$  have the same set of Cauchy sequences;

(b) there exists a homeomorphism 
$$\varphi : \overline{X}_r \to \overline{X}_s$$
 with  $\varphi \upharpoonright \omega = \mathrm{id}(\omega)$ .

### Definition

Cauchy sequence equivalence relation: For  $r, s \in \mathbb{X}$ ,  $rE_{cs}s$  iff  $(\omega, r)$  and  $(\omega, s)$  have the same set of Cauchy sequences.

### Theorem (D.-Gu, 2018)

 $E_{cs}$  is a  $\Pi_1^1$ -complete equivalence relation. So  $E_{cs}$  and Lip (or Uni) are Borel incomparable.

Denote  $E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$ .

#### Theorem (D.-Gu, 2018)

1)  $E_{
m csc}$  is  $\mathbf{\Pi}_3^0$ -equivalence relation;

So  $E_{\rm csc} \sim E_G^X$  for some Polish group G and Polish G-space X;

 $\bullet =^+ \leq_B E_{\rm csc}.$ 

## Question: Does $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{ m csc}$ ?

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Denote 
$$E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$$
.

## Theorem (D.-Gu, 2018)

- $E_{csc}$  is  $\Pi_3^0$ -equivalence relation;
- 2 E<sub>csc</sub> ~ E<sup>X</sup><sub>G</sub> for some Polish group G and Polish G-space X;
  3 ℝ<sup>ω</sup>/c<sub>0</sub> ≤<sub>B</sub> E<sub>csc</sub>;
- $\bullet =^+ \leq_B E_{\rm csc}.$

## Question: Does $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{ m csc}$ ?

Denote 
$$E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$$
.

## Theorem (D.-Gu, 2018)

- $E_{csc}$  is  $\Pi_3^0$ -equivalence relation;
- 2  $E_{\rm csc} \sim E_G^X$  for some Polish group G and Polish G-space X;
- $=^+ \leq_B E_{\rm csc}.$

## Question: Does $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{ m csc}$ ?

Denote 
$$E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$$
.

## Theorem (D.-Gu, 2018)

•  $E_{csc}$  is  $\Pi_3^0$ -equivalence relation;

2 E<sub>csc</sub> ~ E<sup>X</sup><sub>G</sub> for some Polish group G and Polish G-space X;
 3 ℝ<sup>ω</sup>/c<sub>0</sub> ≤<sub>B</sub> E<sub>csc</sub>;

 $=^{+} \leq_{B} E_{\rm csc}.$ 

### **Question:** Does $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{\rm csc}$ ?

Denote 
$$E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$$
.

## Theorem (D.-Gu, 2018)

• 
$$E_{\rm csc}$$
 is  $\Pi^0_3$ -equivalence relation;

2 E<sub>csc</sub> ~ E<sup>X</sup><sub>G</sub> for some Polish group G and Polish G-space X;
 3 ℝ<sup>ω</sup>/c<sub>0</sub> ≤<sub>B</sub> E<sub>csc</sub>;

 $\bullet =^+ \leq_B E_{\rm csc}.$ 

### Question: Does $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{ m csc}$ ?

Denote 
$$E_{\rm csc} = E_{\rm cs} \upharpoonright \mathbb{X}_{\rm cpt}$$
.

## Theorem (D.-Gu, 2018)

• 
$$E_{\rm csc}$$
 is  $\Pi^0_3$ -equivalence relation;

2 E<sub>csc</sub> ~ E<sup>X</sup><sub>G</sub> for some Polish group G and Polish G-space X;
 3 ℝ<sup>ω</sup>/c<sub>0</sub> ≤<sub>B</sub> E<sub>csc</sub>;

 $\bullet =^+ \leq_B E_{\rm csc}.$ 

Question: Does  $\mathbb{R}^{\omega}/\ell_1 \leq_B E_{\rm csc}$ ?



L. Ding On equivalence relations generated by Cauchy sequences

# Some invariant subsets of $E_{\rm csc}$

$$\mathbb{X}_n = \{ r \in \mathbb{X}_{\text{cpt}} : \text{card}(\overline{X}'_r) = n \},\$$
$$\mathbb{X}_{\omega} = \{ r \in \mathbb{X}_{\text{cpt}} : \text{card}(\overline{X}''_r) = 1 \}.$$

### Fact

$$r \in \mathbb{X}_n \iff \overline{X}_r \cong \omega \cdot n + 1,$$
$$r \in \mathbb{X}_\omega \iff \overline{X}_r \cong \omega^2 + 1.$$

$$\mathbb{Y} = \{ r \in \mathbb{X}_{\omega} : \overline{X}_r = \omega \}.$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・

臣



L. Ding

On equivalence relations generated by Cauchy sequences

# The end

## Thank you!

L. Ding On equivalence relations generated by Cauchy sequences

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ 三 ○